GLYCOSYLATED CARDENOLIDES.

VI. RIBOSIDES OF STROPHANTHIDIN AND DIGITOXIGENIN

N. Sh. Pal'yants and N. K. Abubakirov

Partial syntheses of ribosides of strophanthidin (I) and digitoxigenin (II) have been carried out by the orthoester method [1] by analogy with previous work [2]. 3,4-Di-O-acetyl- α -D-ribopyranose 1,2-(methyl orthoacetate) (III) was obtained by the method of Mazurek and Perlin [3]. The orthoester (III), C₁₂H₁₈O₈, had mp 82-84°C (from diethyl ether-petroleum ether), $[\alpha]_D^{24}$ -7.7 ± 2° (c 1.78; chloroform). NMR spectrum (CDCl₃), ppm: 1.75 (3 H at CH₃, s), 2.10 (6 H at 2 Ac, s), 3.28 (3 H at OCH₃, s). The NMR spectrum shows the exo position of the OCH₃ group in compound (III) [3, 4].

The products of the interaction of the orthoester (III) with strophanthidin were saponified with a solution of ammonia in methanol. Subsequent chromatography on a column of SiO₂ gave a 75.0% yield (calculated on the strophanthidin) of strophanthidin β -D-riboside (I), C₂₈H₄₀O₁₀, mp 226-230°C (decomp.) [from benzene-chloroform-methanol (5:5:2)], $[\alpha]_D^{25}$ 0 ± 3° (c 1.18; methanol); $\lambda_{max}^{C_2H_5OH}$: 217 nm (log ε 4.18); ν_{max}^{KBr} , cm⁻¹: 3300-3500 (OH), 1780,

1740, 1720, 1632 (butenolide ring). NMR spectrum $(C_{s}D_{5}N)$, ppm: 0.85 (3 H at C-18, s), 4.92, 5.21 (2 H at C-21, q, centers of doublets, J = 18 Hz), 5.25 (H at C-1', d, J = 5 Hz), 6.00 (H at C-22, br. s), 10.27 (H at C-19, s).

In a similar manner we obtained digitoxigenin β -D-riboside (II), $C_{28}H_{42}O_8$, mp 222°C (from methanol-ether), $[\alpha]_D^{25}$ -28.9 ± 3° (c 0.55; methanol), $\lambda_{max}^{C_2H_5OH}$: 218 nm (log ϵ 4.19); M⁺ 506. ν_{max}^{KBr} , cm⁻¹: 3400-3500 (OH), 1785, 1750, 1625 (butenolide ring). NMR spectrum (C_5D_5N), ppm: 0.74 (3 H at C-18, s), 0.89 (3 H at C-19, s), 4.91, 5.21 (2 H at C-21, q, centers of doublets, J = 18 Hz), 5.12 (H at C-1', d, J = 5 Hz), 5.99 (H at C-22, br. s). The configurations of the glycosidic bonds in compounds (I) and (II) were determined by the method of molecular rotation differences [5].

The NMR spectra were taken on a JNM-4H-100 instrument (100 MHz, HMDS, δ scale, ppm).

LITERATURE CITED

N. K. Kochetkov, A. Ya. [J.] Khorlin, and A. F. Bochkov, Tetrahedron, <u>23</u>, 693 (1967).
N. Sh. Pal'yants, A. F. Bochkov, and N. K. Abubakirov, Khim. Prirodn. Soedin., 58 (1976).
M. Mazurek and A. S. Perlin, Can. J. Chem., <u>43</u>, 1918 (1965).

- 4. R. U. Lemieux and A. R. Morgan, Can. J. Chem., 43, 2199 (1965).
- 5. W. Klyne, Biochem. J., <u>47</u>, No. 4, xli (1950).

Institute of the Chemistry of Plant Substances, Academy of Sciences of the Uzbek SSR, Tashkent. Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 656-657, September-October, 1978. Original article submitted June 14, 1978.